WaveTomo

期刊论文
会议论文
专利成果

期刊论文:

[21] Qingqing Zheng, Yuanzhe Xi, Yousef Saad, Multicolor low-rank preconditioner for general sparse linear systems, Numerical Linear Algebra with Applications, 2020;27:e2316.

[22] Yao, G., N.V. da Silva, D. Wu*. 2019, Reflection-waveform inversion regularized with structure-oriented smoothing shaping. Pure and Applied Geophysics, no. 12, 5315-5335.

[23] Yao, G.*, N. V. da Silva, V. Kazei, D. Wu, and C. Yang. 2019, Extraction of the tomography mode with non-stationary smoothing for full-waveform inversion. Geophysics, no. 4, R527-R537.

[24] Yao, G.*, N. da Silva, M. Warner, D. Wu, and C. Yang. 2019, Tackling cycle-skipping in full-waveform inversion with intermediate data. Geophysics, no. 3, R411–R427.

[25] da Silva, N., G. Yao, and M. Warner. 2019, Wave modeling in viscoacoustic media with transverse isotropy. Geophysics, 84, no. 1,C41-C56.

[26] da Silva, N. V., G. Yao, and M. Warner. 2019, Semiglobal viscoacoustic full-waveform inversion. Geophysics, 84, no. 2,R271-R293.

[27] Li Xiang, G. Yao, Fenglin Niu, Di Wu. 2019, An immersed boundary method with iterative symmetric interpolation for irregular surface topography in seismic wavefield modeling. Journal of Geophysics and Engineering, no. 4, 643-660.

[28] Chen Hanming, Zhou Hui, Rao Ying et al., 2019, A matrix-transform numerical solver for fractional Laplacian viscoacoustic wave equation: Geophysics, 84(4), T283-T297.

[29]Chen Hanming, Zhou Hui, Jiang, S., & Rao, Y. 2019. Fractional Laplacian Viscoacoustic Wave Equation Low-Rank Temporal Extrapolation. IEEE Access, 7, 93187-93197.

[30] Qingqing Zheng, Linzhang Lu, On parameterized matrix splitting preconditioner for the saddle point problems, International Journal of Computer Mathematics, 96(2019) 1-17.

[31] Yao, G.*, N. V. Silva, M. Warner, and T. Kalinicheva. 2018, Separation of Migration and Tomography Modes of Full‐Waveform Inversion in the Plane Wave Domain. Journal of Geophysical Research: Solid Earth, 123, no. 2, 1486-1501.

[32] Yao, G., N. da Silva, and D. Wu*. 2018, An effective absorbing layer for the boundary condition in acoustic seismic wave simulation. Journal of Geophysics and Engineering, 15, no. 2, 495-511.

[33] Yao, G., N. da Silva, and D. Wu*. 2018, Sensitivity analyses of acoustic impedance inversion with full-waveform inversion. Journal of Geophysics and Engineering, 15, no. 2, 461-477.

[34] Yao, G.*, N. V. da Silva, H. A. Debens, and D. Wu. 2018, Accurate seabed modeling using finite difference methods. Computational Geosciences, 22, no. 2, 469–484.

[35] Yao, G.*, N. V. da Silva, and D. Wu. 2018, Forward modelling formulas for least-squares reverse-time migration. Exploration Geophysics, 49, no. 4, 506-518.

[36] da Silva, N. V., and G. Yao. 2018, Wavefield reconstruction inversion with a multiplicative cost function. Inverse Problems, 34, no. 1,015004.

[37] da Silva, N. V., G. Yao, and M. Warner. 2018, Semi-global inversion of v p to v s ratio for elastic wavefield inversion. Inverse Problems, 34, no. 11,115011.

[38] Yao G., da Silva N. V. and Wu D. * (2018), An effective absorbing layer for the boundary condition in acoustic seismic wave simulation, Journal of Geophysics and Engineering 15(2) 495-511.

[39] Yao G., and Wu D. * (2017), Reflection full waveform inversion, Science China Earth Sciences, 60(10), 1783-1794.

[40] Chen Haming, Zhou Hui, Zhang Qingchen, et al., 2017, Modeling elastic wave propagation using k-space operator-based temporal high-order staggered-grid finite-difference method: IEEE Transactions on Geoscience and Remote Sensing, 55(2), 801-815.